Auli Bläuer, Laura Arppe, Marianna Niemi, Markku Oinonen, Kerstin Lidén, Jussi-Pekka Taavitsainen & Juha Kantanen
INFERRING PREHISTORICAL AND HISTORICAL FEEDING PRACTICES FROM δ^{15}N AND δ^{13}C ISOTOPE ANALYSIS ON FINNISH ARCHAEOLOGICAL DOMESTICATED RUMINANT BONES AND TEETH

Abstract
Written historical sources describe different feeding practices for cattle and sheep during the 16th–18th century in Finland. In this study, we analysed carbon (δ^{13}C) and nitrogen (δ^{15}N) isotope values in 43 bones and teeth from archaeological cattle and sheep (or goat) dating from the Bronze Age to the modern times (c 1700 BC to AD 1980). The results indicated small differences in the isotope values among species and periods. Our results suggested a temporal trend in δ^{13}C values likely reflecting an increasing importance of forest-based fodder in the animal feeding. Seaweed was not a major component in the diet of domestic Finnish animals, but could have contributed to the diet of the sheep from Pasvik, Norway. The variation in the isotopic values cannot be explained by the feeding regimes described in written sources alone, but other factors, such as metabolic differences between cattle and sheep, starvation and sampling variation can have contributed.

Keywords: Bone, carbon isotope, cattle, feeding, nitrogen isotope, sheep, teeth

Auli Bläuer*, Green Technology, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland and Department of Archaeology, University of Turku, FI-20014 Turun yliopisto, Finland; Laura Arppe*, Laboratory of Chronology, Finnish Museum of Natural History, P.O. Box 64, FI-00014 Helsingin yliopisto, Finland; Marianna Niemi*, Green Technology, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland and Department of Forensic Medicine, University of Helsinki, FI-00014 Helsingin yliopisto, Finland; Markku Oinonen, Laboratory of Chronology, Finnish Museum of Natural History, P.O. Box 64, FI-00014 Helsingin yliopisto, Finland and University of Turku, FI-20014 Turun yliopisto, Finland; Kerstin Lidén, Archaeological Research Laboratory, Stockholm University, SE-106-91, Stockholm, Sweden; Jussi-Pekka Taavitsainen, Department of Archaeology, University of Turku, FI-20014 Turun yliopisto, Finland; Juha Kantanen**, Green Technology, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland and Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland: juha.kantanen@luke.fi.

* – Authors contributed equally to this work; ** – Corresponding author.

Received: 27 May 2016; Accepted: 26 September 2016; Revised: 21 October 2016.

INTRODUCTION
The long winter feeding period has been one of the major challenges for Finnish animal husbandry in the past. In Finland the survival of domesticated herbivores (cattle, sheep, goats and horses) over winter requires intensive feeding and thus a significant amount of work. Written historical records reveal that during the 16th century cattle and other livestock were kept inside and fed with winter fodder (hay, straw and leaves) for 31–34 weeks every year (Ström 1932:
Wild plants collected from natural meadows and forests represented an important source of winter fodder for domesticated herbivores before hay or other animal fodder was cultivated, that was not until the late 19th century. Only straw and small amounts of grain, that were available for animals, derived from cultivated soil (Soininen 1974; Bläuer 2015).

Collecting enough fodder for the indoor season, which lasted c 7 months, was a struggle. Documents indicate that even during normal years fodder had to be carefully rationed in order to last until spring. During cold and late springs, or after a bad harvest, animals were left starving, sometimes even to death (Säihke 1963; Lappalainen 1970: 762; Heino 1987: 246).

Due to the limited amount of hay available its use was strictly regulated during the late medieval and post-medieval periods. Farm animals formed a hierarchy, where the most valuable animals were prioritized: this practice is described in several written sources dating from the 16th century onward (e.g. Säihke 1963; Soininen 1974: 225; Talve 1997: 69). Most of the hay was reserved for horses. Pregnant dairy cows also got some hay, but they were mostly fed straw, chaff and dry leaves, and draught oxen, which were not worked during the winter period, were fed almost exclusively straw. Even horse dung was sometimes used as cattle fodder (Soininen 1974: 226). Sheep, on the other hand, were usually fed dry leaves and branches of deciduous trees (Fi. kerppu) (Soininen 1974: 224). There were also differences in the summer pastures of these animals. Sheep, where possible, grazed on islands further away from the settlement, while cows were pastured in the forest around the farm or village, returning for milking every evening (Mattila 1960: 427; Papunen 1996: 306).

However, in Finland, written historical sources describing animal feeding are only available from the 16th century onwards (Bläuer 2015: 24–5). It remains uncertain whether similar practices were in place already during the early medieval and prehistoric periods. It could be assumed that some of the post-medieval winter feeding difficulties were due to the growing human and domesticated animal populations and increasing colonization. Consequently, the diminishing size of sheep from the medieval period to the post-medieval period in the town of Turku has been interpreted as reflecting increasing competition over fodder resources (Tourunen 2008: 139). A period of cool climate (the so called ‘Little Ice Age’) that lasted from the 13th or 14th century to the mid-19th century had negative effects on the crop yields in Finland (Holopainen & Helama 2009; Huhtamaa & Helama in press) and may also have affected the availability of animal fodder. Thus, during the earlier periods there could have been better resources for animal feeding and more hay available per animal.

As bulk bone collagen carbon (δ13C) and nitrogen (δ15N) isotope values of herbivores reflect the average isotope composition of the consumed vegetation during the last few years of an animal’s life, their values can be used to study diet of animals (e.g. Ambrose & Norr 1993; Tieszen & Fagre 1993; Noe-Nygaard et al. 2005; Zazzo et al. 2015). Several factors operating on different levels – regional, local and individual – can cause variability in herbivore δ13C and δ15N values.

As regards to δ13C values, regional climatic and environmental factors such as temperature, precipitation and altitude have been observed to influence the isotopic levels of animals (van Klinken et al. 1994; 2000; Hobson et al. 2003; Männel et al. 2007). In coastal areas, ingestion of marine biomass can result in elevated δ13C values of consumers (Balasse et al. 2005). On a more local scale, δ13C values can be used to distinguish between animals feeding in open areas, such as meadows, or animals feeding in closed environments (Tieszen 1991; Noe-Nygaard et al. 2005; Bonafini et al. 2013; Zazzo et al. 2015). As δ13C values in a closed forest environment tend to be lower than those in open environments, browsers (such as roe deer and red deer) tend to have δ13C values lower than grazing herbivores (Eriksson et al. 2008; Zazzo et al. 2015). In the case of δ15N values, variation could be due to regional-scale environmental factors, such as precipitation (Heaton et al. 1986; Gröcke et al. 1997; Schnyder et al. 2006) and altitude (Männel et al. 2007), farm-level factors like manuring and pasture management (Bogaard et al. 2007; Zazzo et al. 2015), or use of browse, and factors operating at the individual level like nutritional or drought stress (Sealy et al. 1987; Hobson et al. 1993; Schwarcz et al. 1999; Fuller et al. 2005), gestation and weaning (Balasse & Tresset...
However, previous studies have shown that specimens of the same species excavated from the same site typically display similar δ¹³C and δ¹⁵N patterns and that these values usually differ from values of the same species from different sites (Männel et al. 2007). This suggests that microhabitats – with subtle differences in light, moisture and temperature – affect the isotopic values at specific sites providing variation in values of the same species (Krigbaum 2003; Eriksson et al. 2008; Eriksson 2013).

Here we used δ¹³C and δ¹⁵N values from archaeological cattle and sheep skeletal remains in order to study the diet of these two domesticated herbivores, and to compare the diet inferred from the isotopic records with written records. This is the first study that investigates collagen δ¹⁵N and δ¹³C isotope values in Finnish prehistorical and historical animal bones and teeth. Moreover, it is typical to use published isotope data from ruminants as baseline information for human dietary studies, but less studies have been conducted to explore the diet of sheep and cattle (but see Noe-Nygaard et al. 2005).

Our assumption is that the different feeding practices described in the Finnish written records would also be visible in the bone collagen isotope data, as seen in differences between cattle and sheep. If cattle were fed straw and husk during the winter, that were derived from farmlands fertilized with organic supplements, we would expect higher δ¹⁵N values in cattle than sheep that were almost exclusively fed wild plants. Further, differences in the δ¹³C values could reveal temporal changes in the use of forests for pasture or a winter fodder source. Moreover, the change in the feeding practices over the centuries inferred from the historical sources and the increasing proportion of straw in fodder would turn up as increasing δ¹⁵N values in the later periods.

MATERIALS AND METHODS

Materials

Finland suffers from a relative scarcity of archaeological bone finds due their dissolution in the acidic soils common throughout the Boreal forest zone. The isotopic preservation of our study material in the challenging soil conditions of Finland are examined using well-established quality criteria based on elemental concentrations and molecular ratios. In total, we studied 43 samples of bone or teeth from cattle (*Bos taurus*, 23 samples), sheep (*Ovis aries*, 20 samples) and sheep or goat (*Ovis aries/Capra hircus*) dating from the Bronze Age to the modern times (from 1700 BC to AD 1980) (Table 1). The selected bones and teeth were also sampled for aDNA and radiocarbon dated (Niemi et al. 2013; 2015). The paucity of well-preserved and securely dated animal bones limited the possibilities to acquire temporally and geographically representative material, as prehistoric unburnt bone rarely survives in the acidic Finnish soil (Tourunen 2011; Bläuer & Kantanen 2013). All bones used in this study were radiocarbon dated to ascertain their connection to a particular chronological period, as in thin archaeological layers some bones may be later intrusions (Table 1; also Bläuer & Kantanen 2013).

The material was divided into three chronological categories: the prehistoric period (1700 BC to 1200/1300 AD), the medieval period (from AD 1200/1300 to AD 1550) and to the post-medieval period (from AD 1550 to AD 1800). In the prehistoric sample only one bone dates to the Bronze Age (Nakkila), and rest of the available samples date to the Iron Age. Even if found in an Iron Age cemetery or burial context (see Table 1), the bones from Luistari in Eura and Hinsala in Vesilahti proved to date to modern times (the 19th–20th century) (Tourunen 2011). However, they were included for comparative purposes.

Out of 20 sheep samples, three (Sysmä and Mikkeli: mandibular molars; and Turku: axis) were identified osteologically as sheep or goat. As goats are rare in the Finnish osteological samples (Bläuer & Kantanen 2013; Bläuer 2015: 54), these bones are more likely to derive from sheep than from goat and are thus here referred to as sheep. Most of the sampled bones were metacarpals or metatarsals. We preferred bones with closed epiphyses in order to exclude infants, possibly still suckling animals, from the sample set. If the epiphysis was missing, care was taken to sample only bones from adult-sized individuals with a compact bone structure, indicating maturity.
Fig. 1. Map of sampled sites and their coordinates. Map: H. Ojanen, Natural Resources Institute Finland (Luke).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Country</th>
<th>Location</th>
<th>N</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Finland</td>
<td>Kökar</td>
<td>6658262</td>
<td>159806</td>
</tr>
<tr>
<td>2</td>
<td>Finland</td>
<td>Lovisa</td>
<td>6700237</td>
<td>447451</td>
</tr>
<tr>
<td>3</td>
<td>Finland</td>
<td>Turku</td>
<td>6710848</td>
<td>240120</td>
</tr>
<tr>
<td>4</td>
<td>Finland</td>
<td>Raisio</td>
<td>6713450</td>
<td>235819</td>
</tr>
<tr>
<td>5</td>
<td>Finland</td>
<td>Naantali</td>
<td>6714300</td>
<td>226091</td>
</tr>
<tr>
<td>6</td>
<td>Finland</td>
<td>Lieto</td>
<td>6714649</td>
<td>246325</td>
</tr>
<tr>
<td>7</td>
<td>Finland</td>
<td>Hämeenlinna</td>
<td>6765903</td>
<td>363151</td>
</tr>
<tr>
<td>8</td>
<td>Finland</td>
<td>Eura</td>
<td>6785034</td>
<td>238596</td>
</tr>
<tr>
<td>9</td>
<td>Finland</td>
<td>Pälkäne</td>
<td>6798282</td>
<td>376325</td>
</tr>
<tr>
<td>10</td>
<td>Finland</td>
<td>Vesilahti</td>
<td>6803832</td>
<td>316656</td>
</tr>
<tr>
<td>11</td>
<td>Finland</td>
<td>Nakkila</td>
<td>6816161</td>
<td>235274</td>
</tr>
<tr>
<td>12</td>
<td>Finland</td>
<td>Sysmä</td>
<td>6819039</td>
<td>429268</td>
</tr>
<tr>
<td>13</td>
<td>Finland</td>
<td>Nakkila</td>
<td>6819393</td>
<td>235753</td>
</tr>
<tr>
<td>14</td>
<td>Finland</td>
<td>Mikkeli</td>
<td>6835312</td>
<td>514494</td>
</tr>
<tr>
<td>15</td>
<td>Finland</td>
<td>Parikkala</td>
<td>6855364</td>
<td>656764</td>
</tr>
<tr>
<td>16</td>
<td>Finland</td>
<td>Pihtipudas</td>
<td>7025656</td>
<td>430877</td>
</tr>
<tr>
<td>17</td>
<td>Norway</td>
<td>Pasvik</td>
<td>7749515</td>
<td>638553</td>
</tr>
</tbody>
</table>
The samples used in this study all derived from different archaeological excavations in Finland, except one that was from northern Norway (Fig. 1; Table 1). The bones derived from different types of sites, including burial sites, monasteries and both urban and rural settlement sites. The Norwegian sheep sample from Pasvik originated from a different biogeographic environment (costal and Arctic) and was considered as a reference sample for the Finnish specimens.

Methods

The sample pre-treatment and measurements were performed at the Laboratory of Chronology, Finnish Museum of Natural History – LUOMUS at the University of Helsinki, unless otherwise stated. The bone samples were pretreated using the Longin method (Longin 1971) modified for the present study to extract bone collagen for radiocarbon and isotopic analyses. They were first mechanically and ultrasonically cleaned in distilled water. They were then dried at 100°C overnight, ground to 0.5–1 mm grains on which hydrolysis and removal of carbonate contaminants were performed with 10% HCl at 5°C. After neutralization, humic acids were removed from the samples by leaching the insoluble residue at room temperature with 0.5% NaOH for 18–20 hours. The solution was again neutralized and the sample placed in distilled water with pH adjusted to 2–3 by adding HCl. This was left at 90°C for 24 hours with continuous mixing. This process formed soluble gelatin from which insoluble humic acids were separated in a centrifuge. The remaining soluble gelatin samples were then dried for packing and combustion.

For radiocarbon analyses, the pre-treated samples were mixed with a stoichiometric excess of CuO and packed into glass ampoules, which were pumped to vacuum and torch-sealed. The packed samples were combusted at 520°C overnight. The released CO₂ was collected and purified with liquid N₂ and ethanol traps at -196°C and -85°C, respectively. The purified
<table>
<thead>
<tr>
<th>Site and No on Fig. 1</th>
<th>Lab. ID</th>
<th>Site</th>
<th>Tila</th>
<th>Species</th>
<th>BP</th>
<th>Period</th>
<th>Collection number</th>
<th>δ¹³C</th>
<th>δ¹⁵N</th>
<th>N%</th>
<th>C%</th>
<th>C/N</th>
<th>Radiocarbon date/reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pihtipudas (16)</td>
<td>Hela-2322</td>
<td>313±30</td>
<td>2013</td>
<td>30</td>
<td>16</td>
<td>Medieval</td>
<td>Bone 330</td>
<td>-21.3±3</td>
<td>2.4</td>
<td>14.1</td>
<td>2.1</td>
<td>14.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Parikkala (17)</td>
<td>Hela-2323</td>
<td>342±30</td>
<td>2013</td>
<td>31</td>
<td>15</td>
<td>Medieval</td>
<td>Metatarsal</td>
<td>-21.7±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Pasvik (17)</td>
<td>Hela-2324</td>
<td>984±30</td>
<td>2013</td>
<td>35</td>
<td>17</td>
<td>Prehistorical (Iron Age)</td>
<td>Metatarsal</td>
<td>-21.3±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Raisio (4)</td>
<td>Hela-2325</td>
<td>965±30</td>
<td>2013</td>
<td>32</td>
<td>14</td>
<td>Prehistorical (Iron Age)</td>
<td>Metacarpal</td>
<td>-21.2±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Raisio (4)</td>
<td>Hela-2326</td>
<td>1040±31</td>
<td>2013</td>
<td>33</td>
<td>17</td>
<td>Prehistorical (Iron Age)</td>
<td>Metacarpal</td>
<td>-21.2±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Raisio (4)</td>
<td>Hela-2328</td>
<td>995±30</td>
<td>2013</td>
<td>34</td>
<td>17</td>
<td>Prehistorical (Iron Age)</td>
<td>Metacarpal</td>
<td>-21.3±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Raisio (4)</td>
<td>Hela-2329</td>
<td>1081±32</td>
<td>2013</td>
<td>35</td>
<td>17</td>
<td>Prehistorical (Iron Age)</td>
<td>Metacarpal</td>
<td>-21.2±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Sysmä (12)</td>
<td>Hela-2350</td>
<td>1093±31</td>
<td>2013</td>
<td>36</td>
<td>12</td>
<td>Prehistorical (Iron Age)</td>
<td>Mandibular first molar</td>
<td>-21.6±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Mikkeli (14)</td>
<td>Hela-2351</td>
<td>865±33</td>
<td>2013</td>
<td>37</td>
<td>14</td>
<td>Medieval</td>
<td>Metacarpal</td>
<td>-21.2±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Naantali (5)</td>
<td>Hela-2352</td>
<td>452±30</td>
<td>2013</td>
<td>38</td>
<td>5</td>
<td>Medieval</td>
<td>Talus</td>
<td>-21.7±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Turku (3)</td>
<td>Hela-2353</td>
<td>567±30</td>
<td>2013</td>
<td>39</td>
<td>3</td>
<td>Medieval</td>
<td>Mandible</td>
<td>-21.7±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Vesilahti (10)</td>
<td>Hela-2354</td>
<td>81±30</td>
<td>2013</td>
<td>40</td>
<td>10</td>
<td>Modern</td>
<td>Phalanx 2</td>
<td>-22.4±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Pihtipudas (16)</td>
<td>Hela-2522</td>
<td>342±30</td>
<td>2013</td>
<td>41</td>
<td>16</td>
<td>Medieval</td>
<td>Tibia</td>
<td>-21.7±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Naantali (5)</td>
<td>Hela-2580</td>
<td>260±30</td>
<td>2013</td>
<td>42</td>
<td>5</td>
<td>Medieval</td>
<td>Metatarsal</td>
<td>-21.7±3</td>
<td>2.6</td>
<td>14.8</td>
<td>2.2</td>
<td>15.0</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Table 2. List of samples. Lab. ID – Radiocarbon dating code; Collection number: KM – National Museum of Finland; TYA – University of Turku collection; TMM – Turku Museum Centre; ÅM – Åland Museum; SatM – Provincial Museum of Satakunta. δ\(^{13}\)C values were determined by using EA-IRMS or IRMS (latter denoted with an asterisk, *). Crossed-out samples were rejected based on C/N results.

<table>
<thead>
<tr>
<th>Location</th>
<th>Collect. No.</th>
<th>Date</th>
<th>Age</th>
<th>Species</th>
<th>Bone Part</th>
<th>Code</th>
<th>δ(^{13})C</th>
<th>δ(^{15})N</th>
<th>C/N</th>
<th>δ(^{13})Cnorm</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parikkala (15)</td>
<td>Hela-2581</td>
<td>350±30</td>
<td>Post-medieval</td>
<td>Cattle</td>
<td>Metacarpal</td>
<td>KM 98040:413</td>
<td>-22.0</td>
<td>3.3</td>
<td>15.2</td>
<td>42.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Parikkala (15)</td>
<td>Hela-2583</td>
<td>238±30</td>
<td>Post-medieval</td>
<td>Cattle</td>
<td>Metacarpal</td>
<td>KM 2001058:187</td>
<td>-21.7</td>
<td>2.9</td>
<td>14.6</td>
<td>42.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Lovisa (2)</td>
<td>Hela-2585</td>
<td>322±30</td>
<td>Post-medieval</td>
<td>Cattle</td>
<td>Pelvis</td>
<td>KM 2006051:9</td>
<td>-22.1</td>
<td>4.6</td>
<td>15.3</td>
<td>43.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Eura (8)</td>
<td>Hela-2586</td>
<td>-21</td>
<td>Modern</td>
<td>Cattle</td>
<td>Mandibular M3</td>
<td>KM 25480: 646</td>
<td>-21.2</td>
<td>5.0</td>
<td>11.2</td>
<td>30.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Lieto (6)</td>
<td>Hela-2587</td>
<td>1814±44</td>
<td>Prehistorical (Iron Age)</td>
<td>Cattle</td>
<td>Metatarsal</td>
<td>TYA 597:102</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Turku (3)</td>
<td>Hela-2589</td>
<td>740±30</td>
<td>Medieval</td>
<td>Cattle</td>
<td>Metatarsal</td>
<td>TMM 21816:513B</td>
<td>-22.2</td>
<td>5.2</td>
<td>15.6</td>
<td>43.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Turku (3)</td>
<td>Hela-2590</td>
<td>606±30</td>
<td>Medieval</td>
<td>Cattle</td>
<td>Metatarsal</td>
<td>TMM 21816:513B</td>
<td>-22.2</td>
<td>3.2</td>
<td>14.5</td>
<td>40.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Kökar (1)</td>
<td>Hela-2592</td>
<td>324±30</td>
<td>Post-medieval</td>
<td>Cattle</td>
<td>Metatarsal</td>
<td>ÅM 640</td>
<td>-21.6</td>
<td>5.1</td>
<td>15.4</td>
<td>43.0</td>
<td>3.3</td>
</tr>
<tr>
<td>Hämeeinlinna (7)</td>
<td>Hela-2690</td>
<td>984±24</td>
<td>Prehistorical (Iron Age)</td>
<td>Cattle</td>
<td>Maxillary deciduous PM 4</td>
<td>KM 27424: 1291</td>
<td>-21.3</td>
<td>7.0</td>
<td>14.7</td>
<td>40.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Nakkila (11)</td>
<td>Hela-2691</td>
<td>187±23</td>
<td>Post-medieval</td>
<td>Cattle</td>
<td>Phalanx 2</td>
<td>SatM 17102:78</td>
<td>-22.5</td>
<td>5.9</td>
<td>14.9</td>
<td>42.9</td>
<td>3.4</td>
</tr>
</tbody>
</table>
tal analyzer at the Laboratory of Chronology, University of Helsinki. The obtained C% and N% values were used to calculate collagen C/N ratios.

Only bone samples were considered in the statistical analysis because teeth and bones represent different time periods in an individual’s life and the isotopes found in teeth might reflect suckling (e.g. Hedges et al. 2006). In addition, the two modern samples and the Iron Age sheep sample from Pasvik, northern Norway were excluded (the latter not providing information for the Finnish context; it was used as a reference sample). One cattle specimen from Kökar and one sheep sample from Raisio were excluded based on unsatisfactory quality criteria (see chapter Results below). In total 32 bone specimens were considered in the statistical analyses which were performed with the MIXED procedure of the SAS v.9.3 software (SAS Institute Inc. Cary, NC, USA). The cattle and sheep data were divided into three temporal categories for statistical analysis based on the radiocarbon dating: prehistory (earlier than AD 1200/1300), medieval (AD 1200/1300–1550) and post-medieval (AD 1550–1800). The δ13C and δ15N values from different species and different time periods were considered as independent observations and were statistically analysed using a two-way analysis of variance (ANOVA). The following statistical model was used to analyse any effect of species and prehistorical/historical period, all considered as fixed effects, on the isotope values:

\[Y_{ijk} = \mu + S_i + P_j + (S \times P)_{ij} + e_{ijk}, \]

where \(Y_{ijk} \) represents either δ13C or δ15N values, \(\mu \) is the general mean, \(S_i \) is the effect of species (cattle, sheep), \(P_j \) is the effect of chronological period (prehistoric, medieval, post-medieval), \((S \times P)_{ij} \) is the effects of interaction of species and period, and \(e_{ijk} \) is the error term. The statistical significances of these fixed effects were explored through F-tests and the differences between the model-based estimates of means through t-tests. The normality assumption of the residuals was checked by a quantile-quantile (QQ) plot and drawing a histogram of the Studentized residuals using the software SAS. The Studentized residuals for δ13C and δ15N data were approximately normally distributed (results not shown) supporting the use of ANOVA for the present statistical analysis.

RESULTS

The results for the cattle and sheep isotope analyses are shown in Table 2. The preservation of the analysed collagen, and thus, the integrity of the isotopic data, is typically evaluated based on the carbon and nitrogen content (%) and C/N ratio of the extract (see DeNiro 1985; DeNiro & Weiner 1988; Ambrose 1990; van Klinken 1999; Sealy et al. 2014). The commonly accepted range
of C/N ratios characteristic for well-preserved collagen is 2.9–3.6 (DeNiro 1985; DeNiro & Weiner 1988; Ambrose 1990; van Klinken 1999; Sealy et al. 2014). The acceptable values for C% and N% are somewhat less precisely defined. Fresh and/or well-preserved collagen has been reported to have nitrogen contents of c 11–17% (Ambrose 1990; van Klinken 1999; Sealy et al. 2014). Van Klinken (1999) reports a mean C% of 34.8±8.8 for a suite of acceptable western-European collagen samples, while higher values of 41–47% were suggested by Ambrose (1990) and Sealy et al. (2014).

Of the analysed specimens, two are excluded from further analysis and discussion due to unacceptably low C/N ratios and distinctly anomalous C and/or N contents of collagen (Table 2). Two further specimens show decreased N and C contents. Their C% values are within the range reported by van Klinken (1999), but their N% values at 9.9 and 10.6% are just below the generally accepted 11% for fresh collagen. The slightly decreased C and N contents of the collagen might suggest the presence of inorganic salt residues, e.g. NaCl from the chemical treatments, or perhaps moisture in these samples (Ambrose 1990; van Klinken 1999), which would not alter the C or N isotopic composition of the samples. Furthermore, the C/N ratios are characteristic for fresh collagen, giving no indication of extraneous contaminant C or N in the sample. Thus, considering that the N% values are just below the cut-off value, we include these samples in the dataset, but note that the quality of collagen extracted from these specimens is not quite as good as that of the other samples.

For the cattle bone and tooth samples passing the quality control explained above, the δ\(^{13}\)C values ranged from -22.5 to -21.1‰ (range=1.4‰, SD=0.4, mean=-21.7‰) and for the sheep -22.1 to -20.3‰ (range=1.8‰, SD=0.4‰, mean=-21.5‰) (Fig. 2; Table 2). The δ\(^{15}\)N values ranged from 2.2 to 7.2‰ (range=5.0‰, SD=1.3‰, mean=4.7‰) for the cattle and 3.1

<table>
<thead>
<tr>
<th>Species</th>
<th>Mean</th>
<th>SEM</th>
<th>Mean</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>-21.7</td>
<td>0.07</td>
<td>4.4</td>
<td>0.27</td>
</tr>
<tr>
<td>Sheep</td>
<td>-21.4</td>
<td>0.09</td>
<td>5.1</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 3. Comparisons of model-based estimates of the means of δ\(^{13}\)C and δ\(^{15}\)N values for species (A) and time periods (B) in the bone data used for statistical analysis.

<table>
<thead>
<tr>
<th>Time period</th>
<th>Mean</th>
<th>SEM</th>
<th>Medieval</th>
<th>Post-medieval</th>
<th>Mean</th>
<th>SEM</th>
<th>Medieval</th>
<th>Post-medieval</th>
<th>p-value for the difference</th>
<th>p-value for the difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Age</td>
<td>-21.3</td>
<td>0.10</td>
<td>0.5</td>
<td>0.3</td>
<td>4.2</td>
<td>0.34</td>
<td>-1.5</td>
<td>0.004</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>Medieval</td>
<td>-21.8</td>
<td>0.08</td>
<td>0.0004</td>
<td>0.095</td>
<td>5.7</td>
<td>0.28</td>
<td>-0.2</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-medieval</td>
<td>-21.6</td>
<td>0.12</td>
<td>0.097</td>
<td>0.44</td>
<td>4.1</td>
<td>1.5</td>
<td>0.44</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEM – Standard error of mean
to 8.6‰ (range=5.5‰, SD=1.4‰, mean=5.9‰) for the sheep (Fig. 2; Table 2). The scatter plot of the δ\textsubscript{13}C and δ\textsubscript{15}N values is depicted in Fig. 2. Even though there was a difference in δ\textsubscript{15}N values between sheep and cattle, most of the samples clustered together in the scatter plot except for the sheep sample from Pasvik in northern Norway (OaPas1), that was an outlier showing higher δ\textsubscript{13}C and δ\textsubscript{15}N than the other samples.

In the δ\textsubscript{13}C data (bone samples), there was evidence of statistically significant differences in the mean estimates between the species (F\textsubscript{1,26}=7.59; P=0.011) and among the time periods (F\textsubscript{2,26}=8.28; P=0.002). However, there was no evidence of a species-time period interaction effect (F\textsubscript{2,26}=2.24; P=0.126) indicating that the observed differences in species-specific temporal patterns could be due to sampling variation. The statistical significances of the differences between the model-based estimates of the means explored through t-tests under the used model are presented in Table 3. There was a statistically significant (p<0.05) difference in the δ\textsubscript{13}C estimates between sheep and cattle (sheep showed a higher estimate for δ\textsubscript{13}C than cattle). The prehistoric bone sample showed higher δ\textsubscript{13}C values than the younger bones (Iron Age vs medieval difference p<0.001) and the δ\textsubscript{13}C estimates between the prehistoric and medieval periods differed significantly (p<0.001).

In the δ\textsubscript{15}N data, there was a statistically significant difference among the time periods (F\textsubscript{2,26}=6.92; P=0.004). The F-test under the present model gave for the species F\textsubscript{1,26}=2.78 (P=0.107). Again the species-time period interaction effect, that is the pattern in temporal changes between the two species, was not statistically significant (F\textsubscript{2,26}=1.31; P=0.288). Moreover in the δ\textsubscript{15}N data, a statistically significant difference between the prehistoric and medieval periods (P=0.004) as well as between the medieval and post-medieval periods (P=0.009) was found (Table 3).

DISCUSSION

The results of this study offer insights to changing feeding practices of sheep and cattle in Finland during the prehistoric and historical periods. In general, the present δ\textsubscript{15}N and δ\textsubscript{13}C values from the Finnish cattle and sheep bones are comparable with the results from the other Nordic countries, Sweden and Denmark (e.g. Noe-Nygård et al. 2005). In Swedish Öland, values for Neolithic cattle and sheep/goat ranged between -22.5‰ and -19.8‰ for carbon, and between 4.4‰ and 9.1‰ for nitrogen (Eriksson et al. 2008). Our material included one outlier: a sheep from Pasvik in Norway. The sheep was associated with higher δ\textsubscript{13}C (-20.3‰) and δ\textsubscript{15}N (8.6‰) values, differing from the Finnish values but being within the range found in the Öland sample (Eriksson et al. 2008). The higher δ\textsubscript{13}C value for the Pasvik sample could relate to a seaweed component in the fodder (Balasse et al. 2005), or alternatively reflect increased levels of plant δ\textsubscript{13}C and δ\textsubscript{15}N due to salinity stress or marine aerosols (e.g. Heaton 1987; Brugnoli & Lauteri 1991; Ilyev et al. 2013). The Brodtkorbneset site, from where the sheep bone was found, is located almost 100 km from the Arctic Ocean, but the settlement likely belonged to a mobile group, possibly with a summertime connection to the Arctic Ocean shore (Hedman & Olsen 2009). Thus, influence in the form of seaweed or coastal fodder might offer a logical explanation for the high isotopic values in the Pasvik case. The average δ\textsubscript{13}C values of Finnish coastal (Turku, Naantalı, Lieto, Lovisa, Nakkila, Kökar, Raisio) and inland (Pihtipudas, Parikkala, Sysmä, Mikkeli, Pälkäne, Vesilahti, Eura, Hämeenlinna) samples do not differ significantly (-21.6 and -21.8 respectively; Student’s t-test, p>0.05). These values are as expected if the animals in question were feeding on terrestrial plants (Vogel 1978; O’Leary 1988) as the δ\textsubscript{13}C values of seaweed are higher than those of terrestrial plants (Hansen et al. 2012; Öljafsson et al. 2013). Thus, seaweed seems not to be a significant component of the Finnish coastal animal’s diet.

The δ\textsubscript{13}C mean value is least negative in the prehistoric data and shows a temporally decreasing trend, inviting an explanation based on the well-known increase in the concentration (e.g. Robertson et al. 2001) and decrease of δ\textsubscript{13}C values (Leuenberger 2007) of atmospheric CO\textsubscript{2} due to the burning of fossil fuels over the industrial period. However, the effect of these changes on plant δ\textsubscript{13}C values (and thus, animals) are only observed after c 1800 (e.g. Heaton 1999) and therefore cannot explain the decrease in herbi-
vore δ¹³C values at the time of the prehistoric/medieval transition. Thus we suggest an enhanced influence of plants grown in forests, i.e. the ‘canopy effect’, to account for the decrease in Finnish cattle and sheep δ¹³C values.

The present δ¹³C data are consistent with a scenario of changes in the land use and feeding practice. It appears that relatively more meadows and other open grasslands were available for cattle and sheep farming during the prehistoric time than in the medieval and post-medieval periods and the use of forest pastures and their importance as sources as winter fodder increased in the course of time. Due to the human population growth more animals, especially cattle, were needed to fertilize fields with their manure, as cereal cultivation was important for the society and human nutrition (Niemelä 2008: 82–3). Thereby less optimal land had to be utilized for pastures and collection of animal feed (Bläuer 2015: 55–8). The change from open pasture to woodland might have had a negative effect on cattle productivity. In a modern study, cattle fodder produced from willow (Salix viminalis) leaves was not considered suitable for lactating dairy cows due to its low digestibility (Smith et al. 2014). Moreover, woodland pasture required more active search for feed causing an increased need for energy and an increased risk for predators and accidents. The more intensive use of woodland is also reflected in the Finnish pollen data as increasing numbers of juniper pollen and decreasing numbers of tree pollen (Alenius et al. 2008; Alenius et al. 2014).

In addition to the temporal changes in mean δ¹³C values, we found that the mean δ¹³C estimate for sheep was slightly higher than that for cattle (p<0.05). However, the higher values for sheep are according to our expectation. Historical sources indicate that cattle were typically summer pasturing in forests while sheep were kept in open landscapes on islands (Mattila 1960: 427; Papunen 1996: 306). However, the expected more pronounced ‘canopy feeding effect’ for cattle was a weak signal at best, and this might be an indication of an annual balancing of seasonal diets. Cattle may have been pastured in more closed environments during the summer, while sheep were kept on more open island pastures, where available, but the winter feeding period may have balanced out the differences. During winter, the origin of feed from open and closed environments contrasted with the summer situation: winter feed largely comprised plants from the forest for sheep and from open fields for cattle (Soininen 1974). It could be expected that the isotopic compositions of the animals were dominated by the isotopic signals from winter feed: i.e. more closed woods for sheep (lower δ¹³C) and open fields for cattle (higher δ¹³C). The winter feeding period was longer (31–34 weeks) than that for the summer (18–21 weeks) season (Ström 1932: 12; Säihke 1963: 48). As an additional uncertainty, there are some indications of preferential bone remodelling during certain seasons, with a higher remodelling during the summer (Hillman et al. 1973; Calcagno 2011). Furthermore, any possible residual ‘canopy effect signal’ can easily

<table>
<thead>
<tr>
<th>Fodder</th>
<th>Digestible protein (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hay (Aera, Agrostis & Phleum)</td>
<td>2.5–3.0</td>
</tr>
<tr>
<td>Clover (Trifolium)</td>
<td>5.4–6.0</td>
</tr>
<tr>
<td>Water horsetail (Equisetum fluviatile)</td>
<td>4.4</td>
</tr>
<tr>
<td>Reed (Phragmites communis)</td>
<td>2.5</td>
</tr>
<tr>
<td>Straw: barley (Hordeum vulgare), oats (Avena sativa)</td>
<td>0.9–1</td>
</tr>
<tr>
<td>Dried leaves: birch (Betula), aspen (Populus), rowan (Sorbus), willow (Salix), and alder (Alnus)</td>
<td>4–6</td>
</tr>
</tbody>
</table>

Table 4. Proportion of protein in different types of fodder according to the early-20th-century data (source: Poijärvi 1927: 100–8).
be drowned out by noise produced by combining data from multiple localities covering a large geographical area and temporal variations in season lengths at the localities.

Temporal changes were also observed in the δ¹⁵N values. These values were significantly higher in the medieval period compared with the earlier prehistoric period. The mean values in the prehistory and in the post-medieval period were approximately equal. High medieval δ¹⁵N values could be related to fodder derived from cultivated soil or starvation, as discussed further below.

While the differences in mean δ¹³C values between ancient cattle and sheep observed here are in agreement with the historical feeding practices in Finland, the mean δ¹⁵N values of these two ruminant species do not unambiguously support expectations based on the known traditions. Our sheep bone samples are associated with a higher δ¹⁵N arithmetic mean value (5.7‰) than that of the cattle bone samples (4.4‰), but this difference is not statistically significant (Table 3). This is contrary to the expectations for cattle winter diets being more based on cultivated fodder, which typically produces elevated δ¹⁵N values compared with hay and fodder originating from natural meadows and pastures (Choi et al. 2003; Bateman & Kelly 2007; Bogard et al. 2007). For example, straw, growing on worked and conventionally fertilized land, should exhibit higher δ¹⁵N values than wild plants (Choi et al. 2003; Bol et al. 2005; Bogard et al. 2007; 2013; Fraser et al. 2011). Thus, one can speculate that the amount of straw in the cattle diet was not high enough to alter the nitrogen isotope values and that wild plants were an important source of cattle fodder close to modern times. We suggest, however, that in addition to feeding practices and foraging biotopes, the patterns in isotopic values may reflect other causal factors, such as temporal and regional societal changes in land use, annual balancing of seasonal diets, species-specific differences in grazing traditions, species-specific differences in metabolism and nutritional stress (e.g. Bonafini et al. 2013; Zazzo et al. 2015).

One possible explanation for the opposite than expected difference in δ¹⁵N values between cattle and sheep is related to metabolism and physiology that also can affect skeletal δ¹⁵N values. Sponheimer et al. (2003) conducted a feeding study where cattle consistently displayed significantly lower δ¹⁵N values than goats on controlled, identical diets. A lower species-specific enrichment of δ¹⁵N in cattle compared to goats would act to suppress the expected difference between the species. Moreover, dairy cows lose nitrogen obtained from their diet in their milk (e.g. Hof et al. 1997). In Finland, sheep have not been traditionally milked (Bläuer 2015: 120). In previous studies of archaeological bone material, sheep δ¹⁵N values were either higher or lower than cattle values (higher values: Müldner & Richards 2005; Dürrwächter et al. 2006; Honch et al. 2006; lower values: Bocherens et al. 2006; Hollund et al. 2010). However, the differences and the original input of nitrogen in the diet of these animals are not known. Different animal species may also react differently to the quality of the food and the nitrogen balance of an animal depends on protein nutrition (Hof et al. 1997). In the feeding study by Sponheimer et al. (2003), goats had higher δ¹⁵N levels than cattle, both for high- and low-protein diets, though the difference was not as marked for low-protein feed. Another important implication of the study was that animals on high-protein diets had systematically higher δ¹⁵N values than those feeding on lower protein feed, possibly relating to differences in excretion of nitrogen in urea and faeces (Sponheimer et al. 2003). During the winter feeding season sheep in Finland were fed with dry leaves, which are rich in protein compared with straw and hay (Table 4). Thus, one major factor affecting the sheep δ¹⁵N values could have been the quality of the winter fodder, i.e. nitrogen content.

The nutritional status of an animal also affects the isotope values. Elevated δ¹⁵N values were recorded for example in animals under arid conditions (Heaton 1987; Sealy et al. 1987; Fitzet al. 1995). Water stress is not a plausible cause of systematically higher δ¹⁵N values for sheep in Finland, but physiological or nutritional stress, such as starvation, could elevate δ¹⁵N values (Sealy et al. 1987; Hobson et al. 1993; Gröcke et al. 1997; Finucane 2007). According to osteological studies the size of sheep diminishes in south-western Finland from the medieval to the post-medieval period, whereas the size of cattle remains the same (Tourunen 2008). This
coincides with medieval period sheep bones exhibiting the highest δ^{15}N values. High nutritional stress of the sheep during the medieval period could have led to a stunned growth and smaller individuals.

CONCLUSIONS

In this study we observed a temporal trend in carbon isotope values that is likely to reflect an increasing importance of forest-based fodder in the animal feeding during the historical period. We also observed between-species variation in nitrogen isotope values. Higher nitrogen isotope values in sheep bones might be caused by a combination of high-protein winter fodder (dried leaves) for sheep and deprivation of nitrogen in milking cows. Carbon and nitrogen isotope values are valuable tools for studies concerning animal feeding practises. However, isotope data from archaeological cattle and sheep bones are difficult to interpret solely using historical animal feeding data. It seems likely that the carbon and nitrogen isotope values are not only affected by the quality of the animal fodder but also by other factors, including the location of the site, starvation and possible differences in cattle and sheep metabolism as well as sampling strategy. The variability in the results is likely to reflect complex feeding systems, differences in feeding of cattle and sheep and annual variation in the rate of starvation and available fodder.

ACKNOWLEDGEMENTS

This research was funded by Academy of Finland (projects *FinnARCH*, project #128451, and *BoNe*, project #286499). The work of MN was supported by National Population Genetics Doctoral Programme, funded by the Ministry for Education and Culture and the Academy of Finland; Doctoral School in Health Sciences, University of Helsinki; Ella and Georg Ehrnrooth Foundation; and Finnish Cultural Foundation. We acknowledge The National Board of Antiquities, Museum of Raisio (Harkko), The Museum Centre of Turku, and Aboa Vetus Museum for ancient samples. We would also like to thank all the researchers who gave us access to relevant research material and reports: Teija Alenius, Kenneth Gustavsson, Kristiina Korkea-koski-Väisänen, Ville Laakso, Johanna Lehto-Vahtera, Mirja Miettinen, Marianna Niukkanen, Jari Näränen, Björnar Olsen, Hanna-Maria Pellinen, Aki Pihlman, Hannu Poutiainen, Jaana Riikonen, Eeva-Liisa Schultz, and Kari Uotila. Elise Ketoja is thanked for statistical expertise.

We would also like to thank the anonymous reviewers for useful comments.

REFERENCES

Archival and unpublished sources

Calcagno, J. 2011. Seasonal and anatomical variation in compact bone remodeling in the adult sheep. MS Thesis, California Polytechnic State University, San Luis Obispo.

Department of Archaeology, University of Turku.

Literature

184

Heino, U. 1987. Talonpoikien ja kartanoiden Eurajoki (1300-luvulta vuoteen 1721). In U.

Huhtamaa, H. & Helama, S. in press. Reconstructing crop yield variability in Finland; Long-term perspective of the cultivation history on the agricultural periphery since AD 760. Will be published in *The Holocene*.

Laakso, V. 2014. Papinniemi in Uukuniemi and Related Archaeological Sites of the Eastern Orthodox Cultural Area in Finland. Archaeologia Medii Aevi Finlandiae XIX.

\(^{14}\)C accelerator targets by catalytic reduction of CO. *Radiocarbon* 29 (2) 303–6.

